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Abstract 

Cloud computing has become the main source for executing scientific experiments. It is an 

effective technique for distributing and processing tasks on virtual machines. Scientific workflows 

are complex and demand efficient utilization of cloud resources. Scheduling of scientific 

workflows is considered as NP-complete. The problem is constrained by some parameters such as 

Quality of Service (QoS), dependencies between tasks and users' deadlines, etc. There exists a 

strong literature on scheduling scientific workflows in cloud environments. Solutions include 

standard schedulers, evolutionary optimization techniques, etc. In this research work we design 

and develop an extension of makes pan optimization where task arrival is unknown and parallel 

processing. Hence to achieve that we have design and developed mechanism named OMEO 

(Online makes pan and energy optimization) mechanism; OMEO is designed with parallel 

processing and dynamic arrival of task. ; In OMEO we identify the problem of makes pan and 

processing time and establish the relation among them. Further an algorithm is designed which 

can handle the  unknown processing time; followed by that we design and develop a mechanism 

for the dynamic arrival of task i.e. where the task arrival time is unknown. Further we evaluate 

OMEO by considering the scientific workflow considering the metrics, TET (Task Execution 

Time) by comparing with the existing model. Moreover comparative analysis shows that our 

model achieve better results than any other algorithm.  
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1 Introduction 

In recent years, cloud computing has become a hot research topic, and it is widely used in 

telecommunications, manufacturing, education and scientific research [1]. For example, storage 

clouds provide secure data storage, backup and recording services, which provide great 

convenience for users. Educational clouds [2]-[4] can virtualize various types of hardware 

education resources and then transmit them to the internet system, providing a convenient 

information platform for education departments, teachers and students. In cloud computing, 

resources such as hardware, software and platforms are provided as services with the ``pay-as- 

you-go'' model. Users need to pay for only the services or resources they need without having to 

purchase hardware infrastructure. The current studies focus on virtualization, resource 

management, cloud security, green computing, task scheduling, and so forth. As cloud computing 

services rapidly grow, how to effectively schedule tasks to computational resources (virtual 

machines) according to goals has become increasingly important. The goals of task scheduling 

mainly include reducing task completion time and energy consumption and improving resource 

utilization and load balancing ability [5][6]. With the dramatic increase in the number of cloud 

users, reducing task completion time is helpful for improving user experience. Improving load 

balancing ability contributes to fully utilizing virtual machines to prevent execution efficiency 

from decreasing due to the overload of resources or waste caused by excessive idle resources [7]. 

However, the above two objectives are mutually constrained. For instance, to reduce task 

completion time, it is easy to centrally schedule the tasks on the resources with strong computing 

power, which will cause a load imbalance problem. Therefore, it is challenging to design and 

optimize the task scheduling algorithm to balance the two goals of reducing completion time and 

improving load balancing ability. 

The concept of workflow has its roots in commercial enterprises as a business process modeling 

tool. These business workflows aim to automate and optimize the processes of an organization, 

seen as an ordered sequence of activities, and are a mature research area4 lead by the workflow 

management coalition* (Wf MC), founded in 1993. This notion of workflow has extended to the 

scientific community in which scientific workflows are used support large-scale, complex 

scientific processes; they are designed to conduct experiments and prove scientific hypotheses by 

managing, analyzing, simulating, and visualizing scientific data.5 Therefore, even though both 

business and scientific workflows share the same basic concept, both have specific requirements 

and hence need separate consideration.  

A workflow is defined by a set of computational tasks with dependencies between them. In 

scientific applications, it is common for the dependencies to represent a data flow from one task 

to another; the output data generated by one task becomes the input data for the next one. These 

applications can be CPU, memory, or I/O intensive (or a combination of these), depending on the 

nature of the problem they are designed to solve. In a CPU intensive workflow most tasks spend 

most of their time performing computations. In a memory-bound workflow most tasks require high 

physical memory usage. The I/O intensive workflows are composed of tasks that require and 

produce large amounts of data and hence spend most of their time performing I/Ooperations.6 
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Scientific workflows are managed by different institutions or individuals in different fields 

meaning they have different requirements for the software needed by tasks to run. These 

characteristics make them great candidates to leverage the capabilities offered by cloud computing. 

Scientists can configure VM images to suit the software needs of a specific workflow, and with 

the help of scheduling algorithms and workflow  management systems, they can efficiently run 

their applications on a range of cloud resources to obtain results in a reasonable amount of time[8]. 

In this way, by providing a simple, cost-effective way of running scientific applications that are 

accessible to everyone, cloud computing is revolutionizing the way e-science is done. Many 

scientific areas have embraced workflows as mean to express complex computational problems 

that can be efficiently processed in distributed environments. For example, the Montage 

workflow7 is an astronomy application characterized by being I/O intensive that is used to create 

custom mosaics of the sky on the basis of a set of input images. It enables astronomers to generate 

a composite image of a region of the sky that is too large to be produced by astronomical cameras 

or that has been measured with different wavelengths and instruments. During the workflow 

execution, the geometry of the output image is calculated from that of the input images. 

Afterwards, the input data is re-projected so that they have the same spatial scale and rotation. This 

is followed by a standardization of the background of all images. Moreover Workflow comes with 

some objective to minimize that are discussed below; 

 

• Makes pan: Most of the surveyed algorithms are concerned with the time it takes to run 

the workflow, or makes pan. As with cost, it is included as part of the scheduling objectives 

by either trying to minimize its value, or by defining a time limit, or deadline, for the 

execution of the workflow. 

• Workload maximization. Algorithms developed to schedule ensembles generally aim to 

maximize the amount of work done, that is, the number of workflows executed. This 

objective is always paired with constraints such as budget or deadline, and hence, strategies 

in this category aim at executing as many workflows as possible with the given money or 

within the specified time frame. 

• VM utilization maximization. Most algorithms are indirectly addressing this objective by 

being cost-aware. Idle time slots in leased VMs are deemed as a waste of money as they 

were paid for but not used, and as a result, algorithms try to avoid them in their schedules. 

However, it is not uncommon for this unused time slots to arise from a workflow execution, 

mainly because of the dependencies between tasks and performance requirements. Some 

algorithms are directly concerned with minimizing these idle time slots and maximizing 

the utilization of resources, which has benefits for users in terms of cost, and for providers 

in terms of energy consumption, profit, and more efficient usage of resources. 

• Energy consumption minimization. Individuals, organizations, and governments 

worldwide have developed an increased concern to reduce carbon footprints to lessen the 

impact on the environment. Although not unique to cloud computing, this concern has also 

attracted attention in this field. A few algorithms that are aware of the energy consumed by 
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the workflow execution have been recently developed. They consider a combination of 

contradicting scheduling goals as they try to find a trade-off between energy consumption, 

performance, and cost. Furthermore, virtualization and the lack of control and knowledge 

of the physical infrastructure limit their capabilities and introduce further complexity into 

the problem [9]-[12] 

Further in this  research work, we focus on the makes pan and energy minimization with constraint 

as it is one of the important parameter.  

 

1.1 Motivation and contribution of research work 

The goals of task scheduling mainly include reducing task completion time and energy 

consumption and improving resource utilization and load balancing ability. With the dramatic 

increase in the number of cloud users, reducing task completion time is helpful for improving user 

experience. Improving load balancing ability contributes to fully utilizing virtual machines to 

prevent execution efficiency from decreasing due to the overload of resources or waste caused by 

excessive idle resources. However, the above two objectives are mutually constrained. Several 

research work towards and succeeded, however they ignored issue such as if the processing time 

of task is unknown, dynamic task arrival and parallel processing. For instance, to reduce task 

completion time, it is easy to centrally schedule the tasks on the resources with strong computing 

power, which will cause a load imbalance problem. Therefore, it is challenging to design and 

optimize the task scheduling algorithm to balance the two goals of reducing completion time and 

improving load balancing ability. Hence motivated by these we develop and design mechanism to 

optimize futher Contribution of this research work is given through the below points; 

• At first we study and analyze various problem related to the makes pan minimization and 

further several existing mechanism and their shortcomings are analyzed. 

• In this research work we design and develop OMEO-mechanism for optimizing the energy 

and makes pan with various constraint which is ignored by the existing model; although 

several existing model have considered but  they have focused on single constraint.  

• In here we consider the issue of parallel processing, unknown processing time and task 

arrival time at once and further optimize the makes pan and energy with these constraint. 

• At first we design and develop algorithm for solving general issue and extending for the 

parallel processing and task arrival. 

• OMEO-mechanism is evaluated under the scientific workflow by comparing with the 

existing model and comparative analysis shows that our model achieve better results than 

the existing model.  

This research work is carried out in various section; in first section background of cloud computing 

and the importance of workflow is discussed. Further the various objective of optimizing is 

discussed, and later motivation and contribution of this research wok is highlighted. In second 

section we discuss various existing technique of makes pan and energy minimization and their 

shortcoming. In third section, we have develop and designed OMEO- mechanism with various 
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constraint and helps in minimizing the energy and makes pan. Further in fourth section, we 

evaluate the OMEO-mechanism considering scientific workflow cybershake and its variant; 

further comparative analysis is carried out.  

2 Literature Survey 

Most related scheduling problems involving workflow tasks to cloud resources with geo-

distributed data are NP-hard [13]. Though task scheduling considering energy-efficiency and data 

transmission time between tasks in a single data center has been widely studied, there are only a 

few papers dealing with the above two types of data transmission time in geo-distributed data 

centers. In the following, we give a brief review of the literature on workflow scheduling with 

transmission time and energy optimization with varying electricity prices. Generally, there are two 

types of data transmission time. The generated data transmission time refers to the time needed to 

transmit generated data from predecessor tasks to the current task. The original transmission time 

is the access time of data from geo-distributed data centers to execute the current task. Contention 

is crucial for task scheduling [14]. Contention awareness was accomplished by scheduling the 

communication which could be regarded as a special generated data transmission. The heuristic 

scheduling algorithm constructed by Lin et al. [15] considers the original data transmission time 

without taking into account the generated data transmission time. Mei et al. [16] employed a 

duplication strategy to design workflow scheduling algorithms in which the generated data 

transmission time was considered but the original data transmission time was not. Usually the 

generated data transmission time is considered in task communication models [17]-[20]. However, 

the original data transmission time between tasks and local data has seldom been taken into 

account. Optimizing energy consumption is an important topic in workflow scheduling with 

varying electricity prices in geographically distributed data centers. It is crucial to obtain a balance 

between energy consumption and electricity prices for total cost minimization. Energy 

consumption is often related to workflow applications or task migration [18]-[20]. [21] analyzed 

the power consumption of operations on network devices and computing resources, such as 

switching, transmission, data processing and data storage during task scheduling. They claimed 

that that the power consumption in switching and transmission accounts for a considerable amount. 

[22] presented an energy and cost aware algorithm for scheduling instance intensive IoT 

workflows with batch processing in clouds. Mahdevan et al. [23] investigated the power 

consumption of network equipment such as switches during task communication. The energy 

efficiency of switches could be improved by shutting down switch ports and selecting switches 

with low data rates. In terms of the location of data centers, Qureshi et al. [24] presented an 

algorithm to minimize the total electricity consumption cost. Considering the variability of energy 

prices, S [25] developed a distributed coordination algorithm to decrease the global energy cost 

using a dynamic speed scaling technique. [26] investigated a branch and bound algorithm to 

minimize the total electricity cost. By adopting a dynamic pricing mechanism, power loads could 

be balanced between utility companies and data centers. Power providers could fully sell their 

products while users could save energy costs with dynamic electricity prices. In addition, a 
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heuristic algorithm with low computational complexity was proposed to achieve close to optimal 

performance. [27] reviewed a unified energy portfolio optimization framework for data centers. 

By using onsite storage and deploying geographical workload distribution, data centers can utilize 

high-risk energy choices through offering ancillary services or participating in wholesale 

electricity markets. Most of the existing literature focuses on scheduling independent tasks rather 

than precedence constrained workflow applications. Since workflow applications are complex, it 

is common to decompose them into smaller fragments and to partition their deadlines into sub 

deadlines. Classic methods for this are the heterogeneous Earliset-Finish Time (HEFT) algorithm  

and the Partial Critical Path method (PCP) [17], [18] presented the minimum dependencies energy-

efficient scheduling algorithm which was shown to outperform HEFT and PCP. HEROS is an 

energy efficient task assignment algorithm which allocates independent tasks to heterogeneous 

servers. Doyle et al. [28] designed the Stratus algorithm for independent task scheduling to allocate 

tasks to the nearest data center in order to optimize energy consumption. [29] proposed two 

approaches for multi-objective workflow scheduling in geo-distributed data centers. They 

minimized the total execution time and the total cost but only with the original data transmission 

time in mind. [30] proposed a bi-objective genetic algorithm (BOGA) to optimize both energy 

consumption and system reliability of workflows in the heterogeneous computing systems. [31] 

developed a prediction based dynamic multi-objective evolutionary algorithm for dynamic 

workflow scheduling problems where six objectives were investigated: makes pan, cost, energy, 

degree of imbalance, reliability and utilization. Garg et al. [29] presented a reliability and energy 

efficient workflow scheduling algorithm for jointly considering both resource and user constraints. 

Based on DVFS, [32] proposed a downward and upward energy consumption minimization 

method for the energy consumption in a single data center. Minimizing energy consumption only 

by using DVFS was demonstrated to be insufficient because the server frequency below a given 

threshold might lead to higher energy consumption [33]-[36]. 

3 Proposed Methodology 

In this section, we design and develop OMEO (Online makes pan and energy optimization) 

mechanism to minimize the makes pan and energy for the workflow model; further considering 

the legacy of our previous research work where the processing  time is negligible at first, two cases 

are design for optimization and  we consider the parallel processing and dynamic task arrival 

together which was ignored by the other researcher. Moreover this is online algorithm as the input 

are scheduled one by one.  

3.1 System model  

Let’s consider any hybrid cloud model where the device access to m identical parallel process 

denoted by 𝕘 ∈ 𝕁 = {1, … . . , 𝕜}. Moreover initially we consider that remote cloud as the single 

powerful processor referred as processor 0. Later we extend our work to multiple processor. 

Initially we assume that all task are available at time 0.  
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3.2 Initialization 

Let’s consider non-pre-emptible and independent tasks  𝕝 that are available to given scheduler at 

time is zero; let’s consider ℝ = {1, … , 𝕝 }  be task indices with processing time for task is unknown 

and denoted as 𝕤𝕙.  Moreover main intention here is to optimize the makespan of scheduled task 

on the given processor; in here we consider the offloading cost and makespan together through 

weighted sum. Let ℚ be the set of possible schedule and s  be the schedule, further s decides 

offloading of task on processor; let ℝ𝕘(𝕣) be the task scheduling set on processor 𝕘 ∈ 𝕂 U {0} 

under given schedule 𝕢. consider 𝔸𝕘(𝕢) as the total time taken to complete the assigned to 

processor and it is formulated through the below equation. 

𝔸𝕘(𝕢) = ∑ 𝕤𝕙, ∀ 𝕘

𝕙∈ℝ𝕘(𝕣)

∈ 𝕂 
(1) 

 

𝔸0(𝔸) = ∑ ε𝕤𝕙

𝕙∈ℝ0(𝕢)

 
(2) 

Further as 𝕤𝕙 is unknown, cost is given as 

ϑ(𝕢) = ∑ 𝕩�̂�

𝕙∈ℝ0(𝕢)

 
(3) 

Moreover total cost of schedule  𝕢 is given through below equation 

ℵ( 𝕢 ) ≜ max𝕙∈ℒU{0}{𝔸𝕘 ( 𝕢 )} + 𝕦ϑ( 𝕢 ) (4) 

In the above equation 𝕦 indicates weight parameter which allows to tune importance between cost 

and makespan, further cost minimization can be given as: 

min
𝕢 ∈ ℚ

 ℵ(𝕢) 
(5) 

3.3 Intermediate framework 

In here we design an intermediate framework where processing time 𝕤𝕙 is unknown and costs are  

𝕩�̂� , ∀ 𝕙; in order to develop this intermediate framework we consider ℕ as a problem instance 

of  ℕsum.Further 𝕢(ℕ)  is schedule of online algorithm and �̅�∗(ℕ) is schedule of an optimal 

algorithm. Further the interactive framework is given as:  

max
∀ℕ

ℵ(𝕢(ℕ))

ℵ(�̅�∗(ℕ))
≤ θ 

(6) 

In here θ is tight for algorithm such that it satisfies the below equation. 

ℵ(𝕢(ℕ)) = θℵ(�̅�∗(ℕ)) (7) 
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3.4 Problem definition 

In this section we define the problem which is to reduce the makes pan on given m + 1 processor 

pmax as the cost of off-loading 

minimize
𝕢 ∈ ℚ

 𝔸max(𝕢) 
(8) 

 In the above equation 𝔸max(𝕢) is formulated as 

𝔸max(𝕢) ≜ max{max𝕘∈𝕁U{0} 𝔸𝕘 (𝕢), 𝕦ℝ(𝕢)}  (9) 

Moreover 𝕟max and 𝔸max
∗  indicates objective and further optimal schedule is denoted throughs∗; 

further if 𝕦=0 then 𝕟max is minimal on 𝕜 + 1 processor.  

Further we also observe that there has been issue of parallel processing, hence at first we consider 

in the single processor later section we extend it for parallel execution; similarly task arrival is also 

considered since in real time the task can arrive anytime.  

3.4.1 Relation between 𝕟sum and 𝕟max 

Let 𝕢′  be considered as computed schedule for solving the 𝕟max, further inequalities are 

formulated as:  

γ(𝕢′) = 2θΥ( ∗𝕢
− ) 

 

 

 

(10) 

 Moreover in the above equation we observe that 𝕟maxand 𝕟sumrequires similar solution, hence 

we develop mechanism for 𝕟max. Moreover this is achieved through establishing the lower bound 

for Cmax
∗  

Let 𝔸𝕘  
∗ denotes completion time and ℝ𝕘

∗  indicates task scheduled on given processor i under 

optimal schedule ℝ𝕘
∗  .optimal equation is formulated as: 

𝔸𝕘
∗ = ∑ 𝕤𝕙, ∀𝕘 ∈ 𝕁,

𝕙∈ℝ𝕘
∗

 
(11) 

 

𝔸0
∗ = ∑ ε𝕤𝕙

𝕙∈ℝ0
∗

 
(12) 

 

𝔸max
∗ ≥ ∑ 𝕤𝕙, ∀𝕘 ∈ 𝕁,

𝕙∈ℝ𝕘
∗

 
(12) 
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𝔸max
∗ ≥ ∑ ε𝕤𝕙

𝕙∈ℝ𝕘
∗

 
(13) 

Further substituting 𝔸max
∗   in equation (12) and (13), we achieve: 

(𝕝 +  
1

ε
) 𝔸max

∗ ≥ ∑ 𝕤𝕙

𝕙=1

 
(14) 

Further, 𝔸max
∗   be the optimal objective, 𝕢′  be the optimal schedule for scheduling task T with 

earlier assumption regarding the processing time. 𝔸𝕘
∗  be the schedule length, ℝ0

′ ⊆  ℝ 
′  be the task 

offloaded then we have further equation 

1

μ
∑ 𝔸𝕘

∗  

𝕜

𝕘=1

+ ∑ 𝕩𝕙

 

𝕙∈ℝ0
′

= ∑ 𝕩𝕙

 

𝕙∈ℝ 
′

 

(15) 

Further we use𝔸max
∗  ≥  𝔸𝕘

∗ ,  ∀ 𝕘 ∈ 𝕁U{0} and 𝔸max
∗  ≥ ∑ 𝕩𝕙𝕙∈ℝ0

′   and obtain 

(1 +
𝕜

μ
) 𝔸max

∗ ≥ ∑ 𝕩𝕙

 

𝕙∈ℝ 
′

  
(16) 

 

3.5 Case study for various values of processing time  

In this case we study the various case of processing time; in previous research we considered ε  

value as zero whereas in here If ε is greater than zero  then  the above condition is equivalent to 

the below equation 

𝔸max
(1)

(𝕢alg) ≤ min (2μ, δ)Cmax
∗  

Where  

δ = (1 +
1

𝕜ε
+

𝕜 − 1

𝕜
max (1,

1

ε
)) 

(17) 

 Through the equation 8, we get  

𝔸max
∗ ≥ min(1, ε)uj ≥ min ((1, ε) τj, ∀j) 

And this results in 𝔸max
(1)

(𝕢alg) ≤ 𝔸max
(1) (𝕢1) 

3.6 OMEO algorithm 

Further to improvise the algorithm discussed in previous research work where the processing time 

was negligible, here we consider the processing time greater than zero and also task arrival time is 

unknown. Although the proposed algorithm is an extension of previous algorithm. It has similar 

iteration as previous algorithm; further list is formed through forming the task in ascending order 

𝕩𝕙and task from the start of list are given to the remote cloud and task from the end is given to the 

local processor. Further if the processing time reaches μ𝕩𝕙 then it is terminated and discarded. 

Furthermore in second iteration, all the terminated task are rescheduled in accordance with the first 
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iteration and it terminates the  task on the processor exceeds 𝕩𝕙. Moreover the optimized algorithm 

is given in the below table1, this algorithm has three iteration, in each iteration proposed algorithm 

performs the task  sorting which takes particular amount . 𝕢alg1 indicates the  schedule. 

Step1: ℝ̈(𝕛) = ℝ and 𝕛 = 1 

Step2: While 𝕛 <=3 

Step3: 𝕖0 = ℝ̈(𝕛) + 1 and 𝕖1 = 1 

Step4: Sorting ℝ̈(𝕛) in the ascending order given through 𝕩𝕙 

Step5: Processing of task 𝕖1 on given processor 

Step6: If  𝕛 = 2 then 

Terminate task 𝕖1if the time execution exceeds 𝕩𝕙0
.  and add 

in ℝ̈̈(3) 

End if 

Step7: For 𝕚= 1 to min{𝕜, |ℝ̈(𝕛)} do 

𝕖0 = 𝕖0 − 1 

Step8: Processing of task 𝕖0 on the given  processor 𝕚 

Step9: If 𝕛 = 1 then 

Terminate task 𝕖0 if execution time reaches 𝕩𝕙0
/ε  and add in 

ℝ̈̈(3) 

End if 

End for 

 

Step10: While ℝ̈(𝕛)  is not equal to null do 

Wait till occurrence of next event ℂ. 

Further If ℂ is equal to task that is completed or terminated on 

given processor �̌� ϵ𝕁 then 

Terminate the task �̌� scheduled on given processor 

Step11: ℝ̈(𝕛)is equal to ℝ̈(𝕛)\{�̈�} 

𝕖0 = 𝕖0 − 1 

 

Step12: If 𝕖0 is greater than 𝕖1 then schedule on the given processor ï 

Step13; If 𝕛 = 1 then 

Terminate the task 𝕖0 if the execution time reaches time μ𝕩𝕙0
 

and add in ℝ̈(2) 

End if 

Step13: If 𝕛 = 2 then 

Terminate task 𝕙0 if the execution time reaches the 𝕩𝕙0
/ϵ   

and add in ℝ̈(2) 
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End if 

Else if ℂ is equal to the task 𝕙1  finished on the given 

processor 

Then 

Terminate task 𝕙1 if it is schedule on the processor 

Step14: ℝ̈(𝕛) = ℝ̈(𝕛)\{�̈�} 

𝕙1 = 𝕙1 + 1 

Step15: If task 𝕙1 is not finished or terminated then schedule it on the 

given processor 

Step16: If l = 2 then 

Terminate task 𝕙1 if the TAT(Task Execution Time) reaches 

the threshold of 𝕩𝕙0
 and add it in ℝ̈̈(3) 

End if statement 

End if statement 

End while loop 

𝕛 = 𝕛 + 1 

End while loop 

 

 

 In next section we extend this optimization of makes pan minimization by considering the 

constraint. 

3.6.1 Dynamic task arrival and parallel processing  

 In this section, we extend developed work to be considered for the random task arrival and parallel 

processing. In the previous work, we considered that all that tasks are available and starts from 

null; however in practicality the task may arrive at any time and also their arrival time is not known. 

Hence considering the problem we denote it through 𝕟Sum
DTA and 𝕟max

DTA. Further extension algorithm 

can be written as below: 

Table 1 

Step1: Select any job 𝕙 and run for execution on given machine 𝕘(𝕙) 

Time taken  is denoted as φ 

Step2: Let 𝕠 =  φ/ε𝕝 

Step3: Design an algorithm for entire job which is not completed and schedule it with setting 

𝕠𝕙 ← 𝕠 

Step4: If the jobs are not completed then set ← 2𝕠 and repeat step3 

  



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

1420                                                                http://www.webology.org 
 

Moreover in the above algorithm, let 𝔸max
∗   be the optimal schedule length; here in first step the 

complete time  φ taken by the job 𝕙 on machine 𝕘(𝕙) is comparatively less than the schedule 

length. Further in step 3, first iteration produces a schedule and construct the schedule through 

assigning  the 𝕠 jobs on particular machine which acts fast. Moreover in the worst case scenario 

entire jobs are given to one machine and this would have the length of 𝕝𝕠 = φ/ε 

4 Performance Evaluation 

4.1 System configuration and dataset details 

Now a days, the request of CC (cloud computing) resources has highly emerged in real-time due 

to its vibrant uses, flexibility, cost effective and easily accessible at anywhere anytime through 

internet. Multimedia-signal-processing method is well-known technique that can be utilize in these 

CC-devices. Therefore, the performance of these computing devices must be superior due to the 

extensive demand of these computing devices in day-to-day life. However, high energy 

consumption in these computing devices can disturb their performance; further makes pan is an 

important constraints, hence to optimize these objectives, we have introduced a OMEO for 

heterogeneous computing devices which efficiently reduces energy consumption as well as 

provide superior performance. The run-time can be evaluated considering various jobs as 30, 50, 

100, and 1000. Graphical representation of our outcomes is also presented considering execution-

time, number of tasks and energy consumption. The run-time and total power consumed can be 

evaluated using different parameters in table 1 which is demonstrated in the following section. Our 

proposed model is tested on CyberShake scientific dataset [37] ; further details about the dataset 

is depicted in the table1. We have considered different sizes of scientific workflow experiments as 

30, 50, 100 and 1000. Moreover proposed OMEO is evaluated considering 64-bit with operating 

system of windows 10 with 16 GB RAM and loaded with I5 processor; further  the model  3.20 

GHz CPU and the model is evaluated using  the programming language using java and neon .3 

editor and cloud sim simulator[38]. 
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Figure 1cybershake_workflow 

Table 2 dataset details 

Dataset Number of 

Nodes 

W _levels Total number of task Tasks(Parallel) 

cybershake 100 5 2083325 48 

 

4.2 Comparison 

Moreover  is evaluated  through varying the number of virtual machine as 25, 45 and 65, these 

varied  results are compared with the existing model  by considering the for eminent parameter i.e. 

total execution time, power sum, power average, average power and energy consumption. In here 

table 2 and table 3 presents the comparison  of existing model [39]with the proposed - model by 

varying the virtual machine as 25, 45 and 65.  

Further evaluation is carried out by considering four distinctive instance; first instance is created 

with virtual machine of 25 and cybershake_30 dax file, in second instance number of VM is 

increased by 45 on cybershake_50. Similarly increasing the number of VM as 65on 

cybershake_100, we create third instance. At last fourth instance is created  by considering 25 VM 

on cybershake_1000.  

4.2.1 Energy Consumption 

Energy is one of the essential parameter in workflow scheduling; less the energy consumption 

better is the model. Moreover for instance discussed earlier has been consider for energy 

consumption; in case of first instance existing model consumes 3495.427 whereas    consumes 

416.85. for second instance, existing model  consumes 8703.908 whereas   consumes 1330.922; 
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similarly for third instance and fourth instance existing model consumes 19206.18 and  consumes 

1436.837. Table 3 shows the  data comparison and figure 1 shows the graphical comparison.  

Table 3 Enegy Consumption Comparison 

Instance First instance Second 

instance 

Third 

instance 

Fourth 

instance 

Number of 

VM and 

workflow 

variant 

VM=25 

CS 30 

VM=45 

CS 50 

VM=65 

CS 100 

VM=25 

CS 1000 

ES 3495.427 8703.908 19206.18 19206.18 

PS-OMEO 416.8566 1330.922 1436.837 1436.837 

 88.07% 84.71% 92% 92% 

 

4.2.2 Makes pan 

Makes pan aka TET (Total Execution Time) is the time taken for execution of the task; moreover 

the makes pan needs to be minimized. In this section we compare TET which is given in table 4; 

in here for first instance, total execution time taken by the existing model is 6359.41 and takes 

3030.25. Further in case of second instance and third instance existing model requires 14734.26 

and 18609.25 sec whereas requires 2953.86 sec each. At last in case of fourth instance existing 

model requires 18609.25 and takes 2953.86.  

Instance First Instance Second 

Instance 

Third Instance Fourth 

Instacne 
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15000

20000

25000

CS 30 CS 50 CS 100 CS 1000

VM=25 VM=45 VM=65 VM=25

A
xi

s 
Ti

tl
e

Axis Title

Energy Consumption

ES PS

Figure 2 Energy Consumption comparison 
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Table 4 Makespan Comparison 

 

Figure 3 Makespan optimization 

4.2.3 Average Power 

Power is another parameter considered for comparison to prove the model efficiency, in this sub-

section we compare the average power required for task. For first and second instance existing 

model requires 20.39242 and requires 15.9011.  For third and fourth instance existing model 

requires 20.39242 and proposed model requires average power of 15.90111. Data comparison has 

been given in table 5 and the comparison graph is plotted in the figure 3.  

 

Table 5 Average Power 

 
First 

Instance 

Second 

instance 

Third  

Instance 

Fourth 

Instance  
VM=25 

CS 30 

Vm=45 

CS 50 

VM=65 

CS 100 

Vm=25 

CS 1000 

ES 20.39242 20.39242 20.39242 20.39242 

Number Of VM  

and 

Workflow_variant 

VM=25 

CS 30 

VM=45 

CS 50 

VM=65 

CS 100 

VM=25 

CS 1000 

ES 6359.41 14734.26 18609.25 18609.25 

PS-OMEO 3030.25 2953.86 2953.86 2953.86 

Improvement(in 

percentage) 

52.35% 79.95 84.13 84.13 
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PS 15.9011 15.9011 15.9011 15.90111 

Improvement 27.92 27.92 27.92 27.92 

 

 

Figure 4Average Power comparison 

4.2.4 Power Sum  

At last we compare the Power sum Comparison with the existing model; here it is observed hat for 

first  anzd second instance existing model requires 15723029 and 30769230 whereas proposed 

model requires 4955134 and 4696963. Similarly for third and fourth instance  power sum required 

is 62040773 and 171478073.4 

 

Table 6 Power Sum comparison 

Instance Instance 1 Instance2 Instance3 Instance4 

Number of 

VM and 

workflow 

variant 

VM=25 

CS 30 

VM=45 

CS 50 

Vm=65 

CS 100 

Vm=25 

CS 1000 

ES 15723029 30769230 62040773 171478073.4 

PS-OMEO 4955134 4696963 4955134 7623610.319 

Improvement 68.48 84.73 92.0177 55.54 
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Figure 5 Power Sum Comparison 

4.3 Comparative analysis 

In this section, we analyze the comparison of existing methodology considering the various metric 

such as energy consumption, Average power, power sum and makes pan; at first we compare the 

energy consumption. Moreover through the comparative analysis it is observe that  requires 

88.07%, 84.17%, 92% and 92% less energy than the existing model on four distinctive instance 

respectively; further through the comparison of makes pan, we observe that   requires 52.35%, 

79.95%, 84.13% and 84.13% less execution time than the existing model on for instance 

respectively.  Moreover average power required by  is 27.92% less than the existing model in all 

four instance, further in case of power sum,  requires 68.48%, 84.73%, 92.01% and 55.54% less 

than the existing model.  

Conclusion 

In this research work, we have designed and developed a mechanism named ,  is online algorithm 

for optimization of energy and makes pan; Moreover proposed approach considers the various 

considers which is ignored by the other researcher. These constraints includes dynamic arrival of 

task, unknown processing time and parallel processing;  considers these as issue and optimizes 

through proposing two distinctive algorithm; one is for optimizing the parameter and other for 

considering the constraint. To evaluate the  model several parameter such as energy consumption, 

average power, power sum and makes pan is considered on the scientific workflow; further for 

critical evaluation we considered four instance which varies the number of virtual machine and 

DAX file of cyber shake. Moreover through the comparative analysis, it is observed that  simply 

outperforms the existing model with performing up to 90% better in terms of energy consumption. 

Further OMOE minimizes 75% of makes pan compared to the existing model and requires 27.92% 
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less average power than the existing model; at last in case of power sum it is 75% more efficient. 

Although  performs marginally better than  existing model  However, in practice it would be too 

expensive and time-consuming to collect such data at run-time and further  cost is one of the major 

issue. Hence in the future we would be focusing on  increasing the reliability of the model through 

optimizing the cost.   

Reference 

1.  Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ``Stochastic modeling and performance 

analysis of migration-enabled and error-prone clouds,'' IEEE Trans. Ind. Informat., vol. 11, 

no. 2, pp. 495_504, Apr. 2015. 

2. Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ``A stochastic approach to analysis of 

energy-aware DVS-enabled cloud datacenters,'' IEEE Trans. Syst., Man, Cybern., Syst., 

vol. 45, no. 1, pp. 73_83, Jan. 2015. 

3. Y. Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, ``Collaborative service selection via 

ensemble learning in mixed mobile network environments,'' Entropy, vol. 19, no. 7, p. 358, 

2017. 

4. J. Yu, Z. Kuang, B. Zhang, W. Zhang, D. Lin, and J. Fan, ``Leveraging content 

sensitiveness and user trustworthiness to recommend _ne-grained privacy settings for 

social image sharing,'' IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1317_1332, 

May 2018. 

5.  Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, ``Network location-aware service 

recommendation with random walk in cyber-physical systems,'' Sensors, vol. 17, no. 9, p. 

2059, 2017. 

6. J. Yu, B. Zhang, Z. Kuang, D. Lin, and J. Fan, ``iprivacy: Image privacy protection by 

identifying sensitive objects via deep multi-task learning,'' IEEE Trans. Inf. Forensics 

Security, vol. 12, no. 5, pp. 1005_1016, 2017. 

7. A. Choudhary, I. Gupta, V. Singh, and P. K. Jana, ``A GSA based hybrid algorithm for bi-

objective work_ow scheduling in cloud computing,'' Future Gener. Comput. Syst., vol. 83, 

pp. 14_26, 2018. 

8. Q. Peng, M. Zhou, Q. He, Y. Xia, C. Wu, and S. Deng, ``Multi-objective optimization for 

location prediction of mobile devices in sensor-based applications,'' IEEE Access, vol. 6, 

pp. 77123_77132, 2018. 

9. W. Li, Y. Xia, M. Zhou, X. Sun, and Q. Zhu, ``Fluctuation-aware and predictive work_ow 

scheduling in cost-effective infrastructure-as-a-service clouds,'' IEEE Access, vol. 6, pp. 

61488_61502, 2018. 

10. R. Xu et al., ``Asuf_cient and necessary temporal violation handling point selection 

strategy in cloud work_ow,'' Future Gener. Comput. Syst., vol. 86, pp. 464_479, 2018. 

11. S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, ``Computation of_oading for service 

work_ow in mobile cloud computing,'' IEEE Trans. Parallel Distrib. Syst., vol. 26, pp. 

3317_3329, Dec. 2015. 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

1427                                                                http://www.webology.org 
 

12. J. Yu, D. Tao, M.Wang, and Y. Rui, ̀ `Learning to rank using user clicks and visual features 

for image retrieval,'' IEEE Trans. Cybern., vol. 45, no. 4, pp. 767_779, 2015. 

13. B. Qureshi, “Profile-based power-aware workflow scheduling framework for energy-

efficient data centers,” Future Generation Computer Systems, vol. 94, pp. 453–467, 2019. 

14.  O. Sinnen and L. A. Sousa, “Communication contention in task scheduling,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 16, no. 6, pp. 503–515, 2005. 

15.  W. Lin, C. Liang, J. Z. Wang, and R. Buyya, “Bandwidth-aware divisible task scheduling 

for cloud computing,” Software: Practice and Experience, vol. 44, no. 2, pp. 163–174, 

2014. 

16.  J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in heterogeneous computing 

environments,” Cluster Computing, vol. 17, no. 2, pp. 537–550, 2014. 

17. S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Cost-driven scheduling of grid 

workflows using partial critical paths,” IEEE Transactions on Parallel and Distributed 

Systems, vol. 23, no. 8, pp. 1400–1414, 2012. 

18. M. Z˙ otkiewicz, M. Guzek, D. Kliazovich, and P. Bouvry, “Minimum dependencies 

energy-efficient scheduling in data centers,” IEEE Transactions on Parallel and Distributed 

Systems, vol. 27, no. 12, pp. 3561–3574, 2016. 

19. G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy consumption of real-time 

parallel applications using downward and upward approaches on heterogeneous systems,” 

IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068–1078,2017. 

20.  X. Qu, P. Xiao, and L. Huang, “Improving the energy efficiency and performance of data-

intensive workflows in virtualized clouds,” Journal of Supercomputing, vol. 74, no. 7, pp. 

2935–2955, 2018. 

21.  X. Xu, W. Dou, X. Zhang, and J. Chen, “Enreal: An energy-aware resource allocation 

method for scientific workflow executions in cloud environment,” IEEE Transactions on 

Cloud Computing, vol. 4, no. 2, pp. 166–179, 2016. 

22.  K. Ye, Z. Wu, C. Wang, B. B. Zhou, W. Si, X. Jiang, and A. Y. Zomaya, “Profiling-based 

workload consolidation and migration in virtualized data centers,” IEEE Transactions on 

Parallel and Distributed Systems, vol. 26, no. 3, pp. 878–890, 2015. 

23. J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, “Green cloud computing: Balancing 

energy in processing, storage, and transport,” Proceedings of the IEEE, vol. 99, no. 1, pp. 

149–167, 2011. 

24. Y. Wen, Z. Wang, Y. Zhang, J. Liu, B. Cao, J. Chen, “Energy and cost aware scheduling 

with batch processing for instance intensive IoT workflows in clouds,” Future Generation 

Computer Systems, vol. 101, no. 1, pp. 39–50, 2019. 

25. P. Mahadevan, S. Banerjee, and P. Sharma, “Energy proportionality of an enterprise 

network,” in Proceedings of the first ACM SIGCOMM workshop on Green networking. 

ACM, 2010, pp. 53–60. 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

1428                                                                http://www.webology.org 
 

26.  A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting the electric bill 

for internet-scale systems,” in ACM SIGCOMM computer communication review, vol. 39, 

no. 4. ACM, 2009, pp. 123–134. 

27. R. Stanojevic and R. Shorten, “Distributed dynamic speed scaling,” in INFOCOM, 2010 

Proceedings IEEE. IEEE, 2010, pp.1–5. 

28. J. Doyle, R. Shorten, and D. O’mahony, “Stratus: Load balancing the cloud for carbon 

emissions control,” IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 116–128, 

2013. 

29. J. Liu, E. Pacitti, P. Valduriez, D. De Oliveira, and M. Mattoso, “Multi-objective 

scheduling of scientific workflows in multisite clouds,” Future Generation Computer 

Systems, vol. 63, pp. 76–95,2016. 

30. L. Zhang, K. Li, C. Li, K. Li, “Bi-objective workflow scheduling of the energy 

consumption and reliability in heterogeneous computing systems,” Information Sciences, 

vol. 379, pp. 241–256,2017. 

31.  G. Ismayilov, H.R. Topcuoglu, “Neural network based multi-objective evolutionary 

algorithm for dynamic workflow scheduling in cloud computing,” Future Generation 

Computer Systems, vol. 102, pp. 307–322, 2020. 

32. G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy consumption of real-time 

parallel applications using downward and upward approaches on heterogeneous systems,” 

IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068–1078, 2017. 

33.  M. Safari and R. Khorsand, “PL-DVFS: combining power-aware list-based scheduling 

algorithm with DVFS technique for realtime tasks in cloud computing,” Journal of 

Supercomputing, vol. 74, no. 10, pp. 5578–5600, 2018. 

34.  J. Jiang, Y. Lin, G. Xie, L. Fu, and J. Yang, “Time and energy optimization algorithms for 

the static scheduling of multiple workflows in heterogeneous computing system,” Journal 

of Grid Computing, vol. 15, no. 4, pp. 435–456, 2017. 

35.  B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy efficiency and reliability 

enhancements in real-time applications with precedence constraints,” ACM Transactions 

on Design Automation of Electronic Systems, vol. 18, no. 2, p. 23, 2013. 

36.  Z. Tang, L. Qi, Z. Cheng, K. Li, S. Khan, and K. Li, “An energy-efficient task scheduling 

algorithm in dvfs-enabled cloud environment,” Journal of Grid Computing, vol. 14, no. 1, 

pp. 55–74, 2016. 

37. https://pegasus.isi.edu/workflow_gallery/gallery/cybershake/index.php 

38. W. Long, L. Yuqing and X. Qingxin, "Using Cloud Sim to Model and Simulate Cloud 

Computing Environment," 2013 Ninth International Conference on Computational 

Intelligence and Security, Leshan, 2013, pp. 323-328. 

39. S. Pang, W. Li, H. He, Z. Shan and X. Wang, "An EDA-GA Hybrid Algorithm for Multi-

Objective Task Scheduling in Cloud Computing," in IEEE Access, vol. 7, pp. 146379-

146389, 2019, doi: 10.1109/ACCESS.2019.2946216. 

 

https://pegasus.isi.edu/workflow_gallery/gallery/cybershake/index.php

