
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1409 http://www.webology.org

Online Makes pan And Energy Optimization Mechanism

With Dynamic Task Arrival And Parallel Processing In

Cloud Computing Environment

Chaya T D1 , Dr. Mohamed Rafi2

1Research Scholar, Computer Science and Engineering, University BDT College of Engg,

Davangere Karnataka-577004

2Professor, Dept of Studies in Computer Science & Engineering, University BDT College of

Engg, Davangere Karnataka-577004

Abstract

Cloud computing has become the main source for executing scientific experiments. It is an

effective technique for distributing and processing tasks on virtual machines. Scientific workflows

are complex and demand efficient utilization of cloud resources. Scheduling of scientific

workflows is considered as NP-complete. The problem is constrained by some parameters such as

Quality of Service (QoS), dependencies between tasks and users' deadlines, etc. There exists a

strong literature on scheduling scientific workflows in cloud environments. Solutions include

standard schedulers, evolutionary optimization techniques, etc. In this research work we design

and develop an extension of makes pan optimization where task arrival is unknown and parallel

processing. Hence to achieve that we have design and developed mechanism named OMEO

(Online makes pan and energy optimization) mechanism; OMEO is designed with parallel

processing and dynamic arrival of task. ; In OMEO we identify the problem of makes pan and

processing time and establish the relation among them. Further an algorithm is designed which

can handle the unknown processing time; followed by that we design and develop a mechanism

for the dynamic arrival of task i.e. where the task arrival time is unknown. Further we evaluate

OMEO by considering the scientific workflow considering the metrics, TET (Task Execution

Time) by comparing with the existing model. Moreover comparative analysis shows that our

model achieve better results than any other algorithm.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1410 http://www.webology.org

1 Introduction

In recent years, cloud computing has become a hot research topic, and it is widely used in

telecommunications, manufacturing, education and scientific research [1]. For example, storage

clouds provide secure data storage, backup and recording services, which provide great

convenience for users. Educational clouds [2]-[4] can virtualize various types of hardware

education resources and then transmit them to the internet system, providing a convenient

information platform for education departments, teachers and students. In cloud computing,

resources such as hardware, software and platforms are provided as services with the ``pay-as-

you-go'' model. Users need to pay for only the services or resources they need without having to

purchase hardware infrastructure. The current studies focus on virtualization, resource

management, cloud security, green computing, task scheduling, and so forth. As cloud computing

services rapidly grow, how to effectively schedule tasks to computational resources (virtual

machines) according to goals has become increasingly important. The goals of task scheduling

mainly include reducing task completion time and energy consumption and improving resource

utilization and load balancing ability [5][6]. With the dramatic increase in the number of cloud

users, reducing task completion time is helpful for improving user experience. Improving load

balancing ability contributes to fully utilizing virtual machines to prevent execution efficiency

from decreasing due to the overload of resources or waste caused by excessive idle resources [7].

However, the above two objectives are mutually constrained. For instance, to reduce task

completion time, it is easy to centrally schedule the tasks on the resources with strong computing

power, which will cause a load imbalance problem. Therefore, it is challenging to design and

optimize the task scheduling algorithm to balance the two goals of reducing completion time and

improving load balancing ability.

The concept of workflow has its roots in commercial enterprises as a business process modeling

tool. These business workflows aim to automate and optimize the processes of an organization,

seen as an ordered sequence of activities, and are a mature research area4 lead by the workflow

management coalition* (Wf MC), founded in 1993. This notion of workflow has extended to the

scientific community in which scientific workflows are used support large-scale, complex

scientific processes; they are designed to conduct experiments and prove scientific hypotheses by

managing, analyzing, simulating, and visualizing scientific data.5 Therefore, even though both

business and scientific workflows share the same basic concept, both have specific requirements

and hence need separate consideration.

A workflow is defined by a set of computational tasks with dependencies between them. In

scientific applications, it is common for the dependencies to represent a data flow from one task

to another; the output data generated by one task becomes the input data for the next one. These

applications can be CPU, memory, or I/O intensive (or a combination of these), depending on the

nature of the problem they are designed to solve. In a CPU intensive workflow most tasks spend

most of their time performing computations. In a memory-bound workflow most tasks require high

physical memory usage. The I/O intensive workflows are composed of tasks that require and

produce large amounts of data and hence spend most of their time performing I/Ooperations.6

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1411 http://www.webology.org

Scientific workflows are managed by different institutions or individuals in different fields

meaning they have different requirements for the software needed by tasks to run. These

characteristics make them great candidates to leverage the capabilities offered by cloud computing.

Scientists can configure VM images to suit the software needs of a specific workflow, and with

the help of scheduling algorithms and workflow management systems, they can efficiently run

their applications on a range of cloud resources to obtain results in a reasonable amount of time[8].

In this way, by providing a simple, cost-effective way of running scientific applications that are

accessible to everyone, cloud computing is revolutionizing the way e-science is done. Many

scientific areas have embraced workflows as mean to express complex computational problems

that can be efficiently processed in distributed environments. For example, the Montage

workflow7 is an astronomy application characterized by being I/O intensive that is used to create

custom mosaics of the sky on the basis of a set of input images. It enables astronomers to generate

a composite image of a region of the sky that is too large to be produced by astronomical cameras

or that has been measured with different wavelengths and instruments. During the workflow

execution, the geometry of the output image is calculated from that of the input images.

Afterwards, the input data is re-projected so that they have the same spatial scale and rotation. This

is followed by a standardization of the background of all images. Moreover Workflow comes with

some objective to minimize that are discussed below;

• Makes pan: Most of the surveyed algorithms are concerned with the time it takes to run

the workflow, or makes pan. As with cost, it is included as part of the scheduling objectives

by either trying to minimize its value, or by defining a time limit, or deadline, for the

execution of the workflow.

• Workload maximization. Algorithms developed to schedule ensembles generally aim to

maximize the amount of work done, that is, the number of workflows executed. This

objective is always paired with constraints such as budget or deadline, and hence, strategies

in this category aim at executing as many workflows as possible with the given money or

within the specified time frame.

• VM utilization maximization. Most algorithms are indirectly addressing this objective by

being cost-aware. Idle time slots in leased VMs are deemed as a waste of money as they

were paid for but not used, and as a result, algorithms try to avoid them in their schedules.

However, it is not uncommon for this unused time slots to arise from a workflow execution,

mainly because of the dependencies between tasks and performance requirements. Some

algorithms are directly concerned with minimizing these idle time slots and maximizing

the utilization of resources, which has benefits for users in terms of cost, and for providers

in terms of energy consumption, profit, and more efficient usage of resources.

• Energy consumption minimization. Individuals, organizations, and governments

worldwide have developed an increased concern to reduce carbon footprints to lessen the

impact on the environment. Although not unique to cloud computing, this concern has also

attracted attention in this field. A few algorithms that are aware of the energy consumed by

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1412 http://www.webology.org

the workflow execution have been recently developed. They consider a combination of

contradicting scheduling goals as they try to find a trade-off between energy consumption,

performance, and cost. Furthermore, virtualization and the lack of control and knowledge

of the physical infrastructure limit their capabilities and introduce further complexity into

the problem [9]-[12]

Further in this research work, we focus on the makes pan and energy minimization with constraint

as it is one of the important parameter.

1.1 Motivation and contribution of research work

The goals of task scheduling mainly include reducing task completion time and energy

consumption and improving resource utilization and load balancing ability. With the dramatic

increase in the number of cloud users, reducing task completion time is helpful for improving user

experience. Improving load balancing ability contributes to fully utilizing virtual machines to

prevent execution efficiency from decreasing due to the overload of resources or waste caused by

excessive idle resources. However, the above two objectives are mutually constrained. Several

research work towards and succeeded, however they ignored issue such as if the processing time

of task is unknown, dynamic task arrival and parallel processing. For instance, to reduce task

completion time, it is easy to centrally schedule the tasks on the resources with strong computing

power, which will cause a load imbalance problem. Therefore, it is challenging to design and

optimize the task scheduling algorithm to balance the two goals of reducing completion time and

improving load balancing ability. Hence motivated by these we develop and design mechanism to

optimize futher Contribution of this research work is given through the below points;

• At first we study and analyze various problem related to the makes pan minimization and

further several existing mechanism and their shortcomings are analyzed.

• In this research work we design and develop OMEO-mechanism for optimizing the energy

and makes pan with various constraint which is ignored by the existing model; although

several existing model have considered but they have focused on single constraint.

• In here we consider the issue of parallel processing, unknown processing time and task

arrival time at once and further optimize the makes pan and energy with these constraint.

• At first we design and develop algorithm for solving general issue and extending for the

parallel processing and task arrival.

• OMEO-mechanism is evaluated under the scientific workflow by comparing with the

existing model and comparative analysis shows that our model achieve better results than

the existing model.

This research work is carried out in various section; in first section background of cloud computing

and the importance of workflow is discussed. Further the various objective of optimizing is

discussed, and later motivation and contribution of this research wok is highlighted. In second

section we discuss various existing technique of makes pan and energy minimization and their

shortcoming. In third section, we have develop and designed OMEO- mechanism with various

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1413 http://www.webology.org

constraint and helps in minimizing the energy and makes pan. Further in fourth section, we

evaluate the OMEO-mechanism considering scientific workflow cybershake and its variant;

further comparative analysis is carried out.

2 Literature Survey

Most related scheduling problems involving workflow tasks to cloud resources with geo-

distributed data are NP-hard [13]. Though task scheduling considering energy-efficiency and data

transmission time between tasks in a single data center has been widely studied, there are only a

few papers dealing with the above two types of data transmission time in geo-distributed data

centers. In the following, we give a brief review of the literature on workflow scheduling with

transmission time and energy optimization with varying electricity prices. Generally, there are two

types of data transmission time. The generated data transmission time refers to the time needed to

transmit generated data from predecessor tasks to the current task. The original transmission time

is the access time of data from geo-distributed data centers to execute the current task. Contention

is crucial for task scheduling [14]. Contention awareness was accomplished by scheduling the

communication which could be regarded as a special generated data transmission. The heuristic

scheduling algorithm constructed by Lin et al. [15] considers the original data transmission time

without taking into account the generated data transmission time. Mei et al. [16] employed a

duplication strategy to design workflow scheduling algorithms in which the generated data

transmission time was considered but the original data transmission time was not. Usually the

generated data transmission time is considered in task communication models [17]-[20]. However,

the original data transmission time between tasks and local data has seldom been taken into

account. Optimizing energy consumption is an important topic in workflow scheduling with

varying electricity prices in geographically distributed data centers. It is crucial to obtain a balance

between energy consumption and electricity prices for total cost minimization. Energy

consumption is often related to workflow applications or task migration [18]-[20]. [21] analyzed

the power consumption of operations on network devices and computing resources, such as

switching, transmission, data processing and data storage during task scheduling. They claimed

that that the power consumption in switching and transmission accounts for a considerable amount.

[22] presented an energy and cost aware algorithm for scheduling instance intensive IoT

workflows with batch processing in clouds. Mahdevan et al. [23] investigated the power

consumption of network equipment such as switches during task communication. The energy

efficiency of switches could be improved by shutting down switch ports and selecting switches

with low data rates. In terms of the location of data centers, Qureshi et al. [24] presented an

algorithm to minimize the total electricity consumption cost. Considering the variability of energy

prices, S [25] developed a distributed coordination algorithm to decrease the global energy cost

using a dynamic speed scaling technique. [26] investigated a branch and bound algorithm to

minimize the total electricity cost. By adopting a dynamic pricing mechanism, power loads could

be balanced between utility companies and data centers. Power providers could fully sell their

products while users could save energy costs with dynamic electricity prices. In addition, a

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1414 http://www.webology.org

heuristic algorithm with low computational complexity was proposed to achieve close to optimal

performance. [27] reviewed a unified energy portfolio optimization framework for data centers.

By using onsite storage and deploying geographical workload distribution, data centers can utilize

high-risk energy choices through offering ancillary services or participating in wholesale

electricity markets. Most of the existing literature focuses on scheduling independent tasks rather

than precedence constrained workflow applications. Since workflow applications are complex, it

is common to decompose them into smaller fragments and to partition their deadlines into sub

deadlines. Classic methods for this are the heterogeneous Earliset-Finish Time (HEFT) algorithm

and the Partial Critical Path method (PCP) [17], [18] presented the minimum dependencies energy-

efficient scheduling algorithm which was shown to outperform HEFT and PCP. HEROS is an

energy efficient task assignment algorithm which allocates independent tasks to heterogeneous

servers. Doyle et al. [28] designed the Stratus algorithm for independent task scheduling to allocate

tasks to the nearest data center in order to optimize energy consumption. [29] proposed two

approaches for multi-objective workflow scheduling in geo-distributed data centers. They

minimized the total execution time and the total cost but only with the original data transmission

time in mind. [30] proposed a bi-objective genetic algorithm (BOGA) to optimize both energy

consumption and system reliability of workflows in the heterogeneous computing systems. [31]

developed a prediction based dynamic multi-objective evolutionary algorithm for dynamic

workflow scheduling problems where six objectives were investigated: makes pan, cost, energy,

degree of imbalance, reliability and utilization. Garg et al. [29] presented a reliability and energy

efficient workflow scheduling algorithm for jointly considering both resource and user constraints.

Based on DVFS, [32] proposed a downward and upward energy consumption minimization

method for the energy consumption in a single data center. Minimizing energy consumption only

by using DVFS was demonstrated to be insufficient because the server frequency below a given

threshold might lead to higher energy consumption [33]-[36].

3 Proposed Methodology

In this section, we design and develop OMEO (Online makes pan and energy optimization)

mechanism to minimize the makes pan and energy for the workflow model; further considering

the legacy of our previous research work where the processing time is negligible at first, two cases

are design for optimization and we consider the parallel processing and dynamic task arrival

together which was ignored by the other researcher. Moreover this is online algorithm as the input

are scheduled one by one.

3.1 System model

Let’s consider any hybrid cloud model where the device access to m identical parallel process

denoted by 𝕘 ∈ 𝕁 = {1, … . . , 𝕜}. Moreover initially we consider that remote cloud as the single

powerful processor referred as processor 0. Later we extend our work to multiple processor.

Initially we assume that all task are available at time 0.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1415 http://www.webology.org

3.2 Initialization

Let’s consider non-pre-emptible and independent tasks 𝕝 that are available to given scheduler at

time is zero; let’s consider ℝ = {1, … , 𝕝 } be task indices with processing time for task is unknown

and denoted as 𝕤𝕙. Moreover main intention here is to optimize the makespan of scheduled task

on the given processor; in here we consider the offloading cost and makespan together through

weighted sum. Let ℚ be the set of possible schedule and s be the schedule, further s decides

offloading of task on processor; let ℝ𝕘(𝕣) be the task scheduling set on processor 𝕘 ∈ 𝕂 U {0}

under given schedule 𝕢. consider 𝔸𝕘(𝕢) as the total time taken to complete the assigned to

processor and it is formulated through the below equation.

𝔸𝕘(𝕢) = ∑ 𝕤𝕙, ∀ 𝕘

𝕙∈ℝ𝕘(𝕣)

∈ 𝕂
(1)

𝔸0(𝔸) = ∑ ε𝕤𝕙

𝕙∈ℝ0(𝕢)

(2)

Further as 𝕤𝕙 is unknown, cost is given as

ϑ(𝕢) = ∑ 𝕩�̂�

𝕙∈ℝ0(𝕢)

(3)

Moreover total cost of schedule 𝕢 is given through below equation

ℵ(𝕢) ≜ max𝕙∈ℒU{0}{𝔸𝕘 (𝕢)} + 𝕦ϑ(𝕢) (4)

In the above equation 𝕦 indicates weight parameter which allows to tune importance between cost

and makespan, further cost minimization can be given as:

min
𝕢 ∈ ℚ

 ℵ(𝕢)
(5)

3.3 Intermediate framework

In here we design an intermediate framework where processing time 𝕤𝕙 is unknown and costs are

𝕩�̂� , ∀ 𝕙; in order to develop this intermediate framework we consider ℕ as a problem instance

of ℕsum.Further 𝕢(ℕ) is schedule of online algorithm and �̅�∗(ℕ) is schedule of an optimal

algorithm. Further the interactive framework is given as:

max
∀ℕ

ℵ(𝕢(ℕ))

ℵ(�̅�∗(ℕ))
≤ θ

(6)

In here θ is tight for algorithm such that it satisfies the below equation.

ℵ(𝕢(ℕ)) = θℵ(�̅�∗(ℕ)) (7)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1416 http://www.webology.org

3.4 Problem definition

In this section we define the problem which is to reduce the makes pan on given m + 1 processor

pmax as the cost of off-loading

minimize
𝕢 ∈ ℚ

 𝔸max(𝕢)
(8)

 In the above equation 𝔸max(𝕢) is formulated as

𝔸max(𝕢) ≜ max{max𝕘∈𝕁U{0} 𝔸𝕘 (𝕢), 𝕦ℝ(𝕢)} (9)

Moreover 𝕟max and 𝔸max
∗ indicates objective and further optimal schedule is denoted throughs∗;

further if 𝕦=0 then 𝕟max is minimal on 𝕜 + 1 processor.

Further we also observe that there has been issue of parallel processing, hence at first we consider

in the single processor later section we extend it for parallel execution; similarly task arrival is also

considered since in real time the task can arrive anytime.

3.4.1 Relation between 𝕟sum and 𝕟max

Let 𝕢′ be considered as computed schedule for solving the 𝕟max, further inequalities are

formulated as:

γ(𝕢′) = 2θΥ(∗𝕢
−)

(10)

 Moreover in the above equation we observe that 𝕟maxand 𝕟sumrequires similar solution, hence

we develop mechanism for 𝕟max. Moreover this is achieved through establishing the lower bound

for Cmax
∗

Let 𝔸𝕘
∗ denotes completion time and ℝ𝕘

∗ indicates task scheduled on given processor i under

optimal schedule ℝ𝕘
∗ .optimal equation is formulated as:

𝔸𝕘
∗ = ∑ 𝕤𝕙, ∀𝕘 ∈ 𝕁,

𝕙∈ℝ𝕘
∗

(11)

𝔸0
∗ = ∑ ε𝕤𝕙

𝕙∈ℝ0
∗

(12)

𝔸max
∗ ≥ ∑ 𝕤𝕙, ∀𝕘 ∈ 𝕁,

𝕙∈ℝ𝕘
∗

(12)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1417 http://www.webology.org

𝔸max
∗ ≥ ∑ ε𝕤𝕙

𝕙∈ℝ𝕘
∗

(13)

Further substituting 𝔸max
∗ in equation (12) and (13), we achieve:

(𝕝 +
1

ε
) 𝔸max

∗ ≥ ∑ 𝕤𝕙

𝕙=1

(14)

Further, 𝔸max
∗ be the optimal objective, 𝕢′ be the optimal schedule for scheduling task T with

earlier assumption regarding the processing time. 𝔸𝕘
∗ be the schedule length, ℝ0

′ ⊆ ℝ
′ be the task

offloaded then we have further equation

1

μ
∑ 𝔸𝕘

∗

𝕜

𝕘=1

+ ∑ 𝕩𝕙

𝕙∈ℝ0
′

= ∑ 𝕩𝕙

𝕙∈ℝ
′

(15)

Further we use𝔸max
∗ ≥ 𝔸𝕘

∗ , ∀ 𝕘 ∈ 𝕁U{0} and 𝔸max
∗ ≥ ∑ 𝕩𝕙𝕙∈ℝ0

′ and obtain

(1 +
𝕜

μ
) 𝔸max

∗ ≥ ∑ 𝕩𝕙

𝕙∈ℝ
′

(16)

3.5 Case study for various values of processing time

In this case we study the various case of processing time; in previous research we considered ε

value as zero whereas in here If ε is greater than zero then the above condition is equivalent to

the below equation

𝔸max
(1)

(𝕢alg) ≤ min (2μ, δ)Cmax
∗

Where

δ = (1 +
1

𝕜ε
+

𝕜 − 1

𝕜
max (1,

1

ε
))

(17)

 Through the equation 8, we get

𝔸max
∗ ≥ min(1, ε)uj ≥ min ((1, ε) τj, ∀j)

And this results in 𝔸max
(1)

(𝕢alg) ≤ 𝔸max
(1) (𝕢1)

3.6 OMEO algorithm

Further to improvise the algorithm discussed in previous research work where the processing time

was negligible, here we consider the processing time greater than zero and also task arrival time is

unknown. Although the proposed algorithm is an extension of previous algorithm. It has similar

iteration as previous algorithm; further list is formed through forming the task in ascending order

𝕩𝕙and task from the start of list are given to the remote cloud and task from the end is given to the

local processor. Further if the processing time reaches μ𝕩𝕙 then it is terminated and discarded.

Furthermore in second iteration, all the terminated task are rescheduled in accordance with the first

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1418 http://www.webology.org

iteration and it terminates the task on the processor exceeds 𝕩𝕙. Moreover the optimized algorithm

is given in the below table1, this algorithm has three iteration, in each iteration proposed algorithm

performs the task sorting which takes particular amount . 𝕢alg1 indicates the schedule.

Step1: ℝ̈(𝕛) = ℝ and 𝕛 = 1

Step2: While 𝕛 <=3

Step3: 𝕖0 = ℝ̈(𝕛) + 1 and 𝕖1 = 1

Step4: Sorting ℝ̈(𝕛) in the ascending order given through 𝕩𝕙

Step5: Processing of task 𝕖1 on given processor

Step6: If 𝕛 = 2 then

Terminate task 𝕖1if the time execution exceeds 𝕩𝕙0
. and add

in ℝ̈̈(3)

End if

Step7: For 𝕚= 1 to min{𝕜, |ℝ̈(𝕛)} do

𝕖0 = 𝕖0 − 1

Step8: Processing of task 𝕖0 on the given processor 𝕚

Step9: If 𝕛 = 1 then

Terminate task 𝕖0 if execution time reaches 𝕩𝕙0
/ε and add in

ℝ̈̈(3)

End if

End for

Step10: While ℝ̈(𝕛) is not equal to null do

Wait till occurrence of next event ℂ.

Further If ℂ is equal to task that is completed or terminated on

given processor �̌� ϵ𝕁 then

Terminate the task �̌� scheduled on given processor

Step11: ℝ̈(𝕛)is equal to ℝ̈(𝕛)\{�̈�}

𝕖0 = 𝕖0 − 1

Step12: If 𝕖0 is greater than 𝕖1 then schedule on the given processor ï

Step13; If 𝕛 = 1 then

Terminate the task 𝕖0 if the execution time reaches time μ𝕩𝕙0

and add in ℝ̈(2)

End if

Step13: If 𝕛 = 2 then

Terminate task 𝕙0 if the execution time reaches the 𝕩𝕙0
/ϵ

and add in ℝ̈(2)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1419 http://www.webology.org

End if

Else if ℂ is equal to the task 𝕙1 finished on the given

processor

Then

Terminate task 𝕙1 if it is schedule on the processor

Step14: ℝ̈(𝕛) = ℝ̈(𝕛)\{�̈�}

𝕙1 = 𝕙1 + 1

Step15: If task 𝕙1 is not finished or terminated then schedule it on the

given processor

Step16: If l = 2 then

Terminate task 𝕙1 if the TAT(Task Execution Time) reaches

the threshold of 𝕩𝕙0
 and add it in ℝ̈̈(3)

End if statement

End if statement

End while loop

𝕛 = 𝕛 + 1

End while loop

 In next section we extend this optimization of makes pan minimization by considering the

constraint.

3.6.1 Dynamic task arrival and parallel processing

 In this section, we extend developed work to be considered for the random task arrival and parallel

processing. In the previous work, we considered that all that tasks are available and starts from

null; however in practicality the task may arrive at any time and also their arrival time is not known.

Hence considering the problem we denote it through 𝕟Sum
DTA and 𝕟max

DTA. Further extension algorithm

can be written as below:

Table 1

Step1: Select any job 𝕙 and run for execution on given machine 𝕘(𝕙)

Time taken is denoted as φ

Step2: Let 𝕠 = φ/ε𝕝

Step3: Design an algorithm for entire job which is not completed and schedule it with setting

𝕠𝕙 ← 𝕠

Step4: If the jobs are not completed then set ← 2𝕠 and repeat step3

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1420 http://www.webology.org

Moreover in the above algorithm, let 𝔸max
∗ be the optimal schedule length; here in first step the

complete time φ taken by the job 𝕙 on machine 𝕘(𝕙) is comparatively less than the schedule

length. Further in step 3, first iteration produces a schedule and construct the schedule through

assigning the 𝕠 jobs on particular machine which acts fast. Moreover in the worst case scenario

entire jobs are given to one machine and this would have the length of 𝕝𝕠 = φ/ε

4 Performance Evaluation

4.1 System configuration and dataset details

Now a days, the request of CC (cloud computing) resources has highly emerged in real-time due

to its vibrant uses, flexibility, cost effective and easily accessible at anywhere anytime through

internet. Multimedia-signal-processing method is well-known technique that can be utilize in these

CC-devices. Therefore, the performance of these computing devices must be superior due to the

extensive demand of these computing devices in day-to-day life. However, high energy

consumption in these computing devices can disturb their performance; further makes pan is an

important constraints, hence to optimize these objectives, we have introduced a OMEO for

heterogeneous computing devices which efficiently reduces energy consumption as well as

provide superior performance. The run-time can be evaluated considering various jobs as 30, 50,

100, and 1000. Graphical representation of our outcomes is also presented considering execution-

time, number of tasks and energy consumption. The run-time and total power consumed can be

evaluated using different parameters in table 1 which is demonstrated in the following section. Our

proposed model is tested on CyberShake scientific dataset [37] ; further details about the dataset

is depicted in the table1. We have considered different sizes of scientific workflow experiments as

30, 50, 100 and 1000. Moreover proposed OMEO is evaluated considering 64-bit with operating

system of windows 10 with 16 GB RAM and loaded with I5 processor; further the model 3.20

GHz CPU and the model is evaluated using the programming language using java and neon .3

editor and cloud sim simulator[38].

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1421 http://www.webology.org

Figure 1cybershake_workflow

Table 2 dataset details

Dataset Number of

Nodes

W _levels Total number of task Tasks(Parallel)

cybershake 100 5 2083325 48

4.2 Comparison

Moreover is evaluated through varying the number of virtual machine as 25, 45 and 65, these

varied results are compared with the existing model by considering the for eminent parameter i.e.

total execution time, power sum, power average, average power and energy consumption. In here

table 2 and table 3 presents the comparison of existing model [39]with the proposed - model by

varying the virtual machine as 25, 45 and 65.

Further evaluation is carried out by considering four distinctive instance; first instance is created

with virtual machine of 25 and cybershake_30 dax file, in second instance number of VM is

increased by 45 on cybershake_50. Similarly increasing the number of VM as 65on

cybershake_100, we create third instance. At last fourth instance is created by considering 25 VM

on cybershake_1000.

4.2.1 Energy Consumption

Energy is one of the essential parameter in workflow scheduling; less the energy consumption

better is the model. Moreover for instance discussed earlier has been consider for energy

consumption; in case of first instance existing model consumes 3495.427 whereas consumes

416.85. for second instance, existing model consumes 8703.908 whereas consumes 1330.922;

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1422 http://www.webology.org

similarly for third instance and fourth instance existing model consumes 19206.18 and consumes

1436.837. Table 3 shows the data comparison and figure 1 shows the graphical comparison.

Table 3 Enegy Consumption Comparison

Instance First instance Second

instance

Third

instance

Fourth

instance

Number of

VM and

workflow

variant

VM=25

CS 30

VM=45

CS 50

VM=65

CS 100

VM=25

CS 1000

ES 3495.427 8703.908 19206.18 19206.18

PS-OMEO 416.8566 1330.922 1436.837 1436.837

 88.07% 84.71% 92% 92%

4.2.2 Makes pan

Makes pan aka TET (Total Execution Time) is the time taken for execution of the task; moreover

the makes pan needs to be minimized. In this section we compare TET which is given in table 4;

in here for first instance, total execution time taken by the existing model is 6359.41 and takes

3030.25. Further in case of second instance and third instance existing model requires 14734.26

and 18609.25 sec whereas requires 2953.86 sec each. At last in case of fourth instance existing

model requires 18609.25 and takes 2953.86.

Instance First Instance Second

Instance

Third Instance Fourth

Instacne

0

5000

10000

15000

20000

25000

CS 30 CS 50 CS 100 CS 1000

VM=25 VM=45 VM=65 VM=25

A
xi

s
Ti

tl
e

Axis Title

Energy Consumption

ES PS

Figure 2 Energy Consumption comparison

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1423 http://www.webology.org

Table 4 Makespan Comparison

Figure 3 Makespan optimization

4.2.3 Average Power

Power is another parameter considered for comparison to prove the model efficiency, in this sub-

section we compare the average power required for task. For first and second instance existing

model requires 20.39242 and requires 15.9011. For third and fourth instance existing model

requires 20.39242 and proposed model requires average power of 15.90111. Data comparison has

been given in table 5 and the comparison graph is plotted in the figure 3.

Table 5 Average Power

First

Instance

Second

instance

Third

Instance

Fourth

Instance
VM=25

CS 30

Vm=45

CS 50

VM=65

CS 100

Vm=25

CS 1000

ES 20.39242 20.39242 20.39242 20.39242

Number Of VM

and

Workflow_variant

VM=25

CS 30

VM=45

CS 50

VM=65

CS 100

VM=25

CS 1000

ES 6359.41 14734.26 18609.25 18609.25

PS-OMEO 3030.25 2953.86 2953.86 2953.86

Improvement(in

percentage)

52.35% 79.95 84.13 84.13

0

5000

10000

15000

20000

CS 30 CS 50 CS 100 CS 1000

VM=25 VM=45 VM=65 VM=25

A
xi

s
Ti

tl
e

Axis Title

Chart Title

ES OMEO

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1424 http://www.webology.org

PS 15.9011 15.9011 15.9011 15.90111

Improvement 27.92 27.92 27.92 27.92

Figure 4Average Power comparison

4.2.4 Power Sum

At last we compare the Power sum Comparison with the existing model; here it is observed hat for

first anzd second instance existing model requires 15723029 and 30769230 whereas proposed

model requires 4955134 and 4696963. Similarly for third and fourth instance power sum required

is 62040773 and 171478073.4

Table 6 Power Sum comparison

Instance Instance 1 Instance2 Instance3 Instance4

Number of

VM and

workflow

variant

VM=25

CS 30

VM=45

CS 50

Vm=65

CS 100

Vm=25

CS 1000

ES 15723029 30769230 62040773 171478073.4

PS-OMEO 4955134 4696963 4955134 7623610.319

Improvement 68.48 84.73 92.0177 55.54

0

5

10

15

20

25

CS 30 CS 50 CS 100 CS 1000

VM=25 Vm=45 VM=65 Vm=25

A
xi

s
Ti

tl
e

Axis Title

Chart Title

ES PS

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1425 http://www.webology.org

Figure 5 Power Sum Comparison

4.3 Comparative analysis

In this section, we analyze the comparison of existing methodology considering the various metric

such as energy consumption, Average power, power sum and makes pan; at first we compare the

energy consumption. Moreover through the comparative analysis it is observe that requires

88.07%, 84.17%, 92% and 92% less energy than the existing model on four distinctive instance

respectively; further through the comparison of makes pan, we observe that requires 52.35%,

79.95%, 84.13% and 84.13% less execution time than the existing model on for instance

respectively. Moreover average power required by is 27.92% less than the existing model in all

four instance, further in case of power sum, requires 68.48%, 84.73%, 92.01% and 55.54% less

than the existing model.

Conclusion

In this research work, we have designed and developed a mechanism named , is online algorithm

for optimization of energy and makes pan; Moreover proposed approach considers the various

considers which is ignored by the other researcher. These constraints includes dynamic arrival of

task, unknown processing time and parallel processing; considers these as issue and optimizes

through proposing two distinctive algorithm; one is for optimizing the parameter and other for

considering the constraint. To evaluate the model several parameter such as energy consumption,

average power, power sum and makes pan is considered on the scientific workflow; further for

critical evaluation we considered four instance which varies the number of virtual machine and

DAX file of cyber shake. Moreover through the comparative analysis, it is observed that simply

outperforms the existing model with performing up to 90% better in terms of energy consumption.

Further OMOE minimizes 75% of makes pan compared to the existing model and requires 27.92%

0

50000000

100000000

150000000

200000000

CS 30 CS 50 CS 100 CS 1000

VM=25 VM=45 Vm=65 Vm=25

A
xi

s
Ti

tl
e

Axis Title

Chart Title

ES OMEO

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1426 http://www.webology.org

less average power than the existing model; at last in case of power sum it is 75% more efficient.

Although performs marginally better than existing model However, in practice it would be too

expensive and time-consuming to collect such data at run-time and further cost is one of the major

issue. Hence in the future we would be focusing on increasing the reliability of the model through

optimizing the cost.

Reference

1. Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ``Stochastic modeling and performance

analysis of migration-enabled and error-prone clouds,'' IEEE Trans. Ind. Informat., vol. 11,

no. 2, pp. 495_504, Apr. 2015.

2. Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ``A stochastic approach to analysis of

energy-aware DVS-enabled cloud datacenters,'' IEEE Trans. Syst., Man, Cybern., Syst.,

vol. 45, no. 1, pp. 73_83, Jan. 2015.

3. Y. Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, ``Collaborative service selection via

ensemble learning in mixed mobile network environments,'' Entropy, vol. 19, no. 7, p. 358,

2017.

4. J. Yu, Z. Kuang, B. Zhang, W. Zhang, D. Lin, and J. Fan, ``Leveraging content

sensitiveness and user trustworthiness to recommend _ne-grained privacy settings for

social image sharing,'' IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1317_1332,

May 2018.

5. Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, ``Network location-aware service

recommendation with random walk in cyber-physical systems,'' Sensors, vol. 17, no. 9, p.

2059, 2017.

6. J. Yu, B. Zhang, Z. Kuang, D. Lin, and J. Fan, ``iprivacy: Image privacy protection by

identifying sensitive objects via deep multi-task learning,'' IEEE Trans. Inf. Forensics

Security, vol. 12, no. 5, pp. 1005_1016, 2017.

7. A. Choudhary, I. Gupta, V. Singh, and P. K. Jana, ``A GSA based hybrid algorithm for bi-

objective work_ow scheduling in cloud computing,'' Future Gener. Comput. Syst., vol. 83,

pp. 14_26, 2018.

8. Q. Peng, M. Zhou, Q. He, Y. Xia, C. Wu, and S. Deng, ``Multi-objective optimization for

location prediction of mobile devices in sensor-based applications,'' IEEE Access, vol. 6,

pp. 77123_77132, 2018.

9. W. Li, Y. Xia, M. Zhou, X. Sun, and Q. Zhu, ``Fluctuation-aware and predictive work_ow

scheduling in cost-effective infrastructure-as-a-service clouds,'' IEEE Access, vol. 6, pp.

61488_61502, 2018.

10. R. Xu et al., ``Asuf_cient and necessary temporal violation handling point selection

strategy in cloud work_ow,'' Future Gener. Comput. Syst., vol. 86, pp. 464_479, 2018.

11. S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, ``Computation of_oading for service

work_ow in mobile cloud computing,'' IEEE Trans. Parallel Distrib. Syst., vol. 26, pp.

3317_3329, Dec. 2015.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1427 http://www.webology.org

12. J. Yu, D. Tao, M.Wang, and Y. Rui, ̀ `Learning to rank using user clicks and visual features

for image retrieval,'' IEEE Trans. Cybern., vol. 45, no. 4, pp. 767_779, 2015.

13. B. Qureshi, “Profile-based power-aware workflow scheduling framework for energy-

efficient data centers,” Future Generation Computer Systems, vol. 94, pp. 453–467, 2019.

14. O. Sinnen and L. A. Sousa, “Communication contention in task scheduling,” IEEE

Transactions on Parallel and Distributed Systems, vol. 16, no. 6, pp. 503–515, 2005.

15. W. Lin, C. Liang, J. Z. Wang, and R. Buyya, “Bandwidth-aware divisible task scheduling

for cloud computing,” Software: Practice and Experience, vol. 44, no. 2, pp. 163–174,

2014.

16. J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in heterogeneous computing

environments,” Cluster Computing, vol. 17, no. 2, pp. 537–550, 2014.

17. S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Cost-driven scheduling of grid

workflows using partial critical paths,” IEEE Transactions on Parallel and Distributed

Systems, vol. 23, no. 8, pp. 1400–1414, 2012.

18. M. Z˙ otkiewicz, M. Guzek, D. Kliazovich, and P. Bouvry, “Minimum dependencies

energy-efficient scheduling in data centers,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 12, pp. 3561–3574, 2016.

19. G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy consumption of real-time

parallel applications using downward and upward approaches on heterogeneous systems,”

IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068–1078,2017.

20. X. Qu, P. Xiao, and L. Huang, “Improving the energy efficiency and performance of data-

intensive workflows in virtualized clouds,” Journal of Supercomputing, vol. 74, no. 7, pp.

2935–2955, 2018.

21. X. Xu, W. Dou, X. Zhang, and J. Chen, “Enreal: An energy-aware resource allocation

method for scientific workflow executions in cloud environment,” IEEE Transactions on

Cloud Computing, vol. 4, no. 2, pp. 166–179, 2016.

22. K. Ye, Z. Wu, C. Wang, B. B. Zhou, W. Si, X. Jiang, and A. Y. Zomaya, “Profiling-based

workload consolidation and migration in virtualized data centers,” IEEE Transactions on

Parallel and Distributed Systems, vol. 26, no. 3, pp. 878–890, 2015.

23. J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, “Green cloud computing: Balancing

energy in processing, storage, and transport,” Proceedings of the IEEE, vol. 99, no. 1, pp.

149–167, 2011.

24. Y. Wen, Z. Wang, Y. Zhang, J. Liu, B. Cao, J. Chen, “Energy and cost aware scheduling

with batch processing for instance intensive IoT workflows in clouds,” Future Generation

Computer Systems, vol. 101, no. 1, pp. 39–50, 2019.

25. P. Mahadevan, S. Banerjee, and P. Sharma, “Energy proportionality of an enterprise

network,” in Proceedings of the first ACM SIGCOMM workshop on Green networking.

ACM, 2010, pp. 53–60.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1428 http://www.webology.org

26. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting the electric bill

for internet-scale systems,” in ACM SIGCOMM computer communication review, vol. 39,

no. 4. ACM, 2009, pp. 123–134.

27. R. Stanojevic and R. Shorten, “Distributed dynamic speed scaling,” in INFOCOM, 2010

Proceedings IEEE. IEEE, 2010, pp.1–5.

28. J. Doyle, R. Shorten, and D. O’mahony, “Stratus: Load balancing the cloud for carbon

emissions control,” IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 116–128,

2013.

29. J. Liu, E. Pacitti, P. Valduriez, D. De Oliveira, and M. Mattoso, “Multi-objective

scheduling of scientific workflows in multisite clouds,” Future Generation Computer

Systems, vol. 63, pp. 76–95,2016.

30. L. Zhang, K. Li, C. Li, K. Li, “Bi-objective workflow scheduling of the energy

consumption and reliability in heterogeneous computing systems,” Information Sciences,

vol. 379, pp. 241–256,2017.

31. G. Ismayilov, H.R. Topcuoglu, “Neural network based multi-objective evolutionary

algorithm for dynamic workflow scheduling in cloud computing,” Future Generation

Computer Systems, vol. 102, pp. 307–322, 2020.

32. G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy consumption of real-time

parallel applications using downward and upward approaches on heterogeneous systems,”

IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068–1078, 2017.

33. M. Safari and R. Khorsand, “PL-DVFS: combining power-aware list-based scheduling

algorithm with DVFS technique for realtime tasks in cloud computing,” Journal of

Supercomputing, vol. 74, no. 10, pp. 5578–5600, 2018.

34. J. Jiang, Y. Lin, G. Xie, L. Fu, and J. Yang, “Time and energy optimization algorithms for

the static scheduling of multiple workflows in heterogeneous computing system,” Journal

of Grid Computing, vol. 15, no. 4, pp. 435–456, 2017.

35. B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy efficiency and reliability

enhancements in real-time applications with precedence constraints,” ACM Transactions

on Design Automation of Electronic Systems, vol. 18, no. 2, p. 23, 2013.

36. Z. Tang, L. Qi, Z. Cheng, K. Li, S. Khan, and K. Li, “An energy-efficient task scheduling

algorithm in dvfs-enabled cloud environment,” Journal of Grid Computing, vol. 14, no. 1,

pp. 55–74, 2016.

37. https://pegasus.isi.edu/workflow_gallery/gallery/cybershake/index.php

38. W. Long, L. Yuqing and X. Qingxin, "Using Cloud Sim to Model and Simulate Cloud

Computing Environment," 2013 Ninth International Conference on Computational

Intelligence and Security, Leshan, 2013, pp. 323-328.

39. S. Pang, W. Li, H. He, Z. Shan and X. Wang, "An EDA-GA Hybrid Algorithm for Multi-

Objective Task Scheduling in Cloud Computing," in IEEE Access, vol. 7, pp. 146379-

146389, 2019, doi: 10.1109/ACCESS.2019.2946216.

https://pegasus.isi.edu/workflow_gallery/gallery/cybershake/index.php

